How plants sense the continuing CO₂ increase to narrow stomatal pores and regulate water loss

Julian I.Schroeder¹, Jingbo Zhang¹, Po-Kai Hsu¹, Yohei Takahashi¹, Shintaro Munemasa², Rainer Waadt³, Nuo Wang¹, Yinglong Miao¹, J. Andrew McCammon¹, Felix Hauser¹, Wouter-Jan Rappel¹

¹University of California, San Diego, La Jolla CA, USA ²Okayama University, Okayama, Japan ³University of Heidelberg, Heidelberg, Germany

Stomatal pores in plants control CO_2 influx and water loss. Respiration in the dark and atmospheric $[CO_2]$ elevation cause an increase in leaf CO_2 (C_i), causing reduction in stomatal pore apertures. CO_2 -induced reduction in stomatal conductance could enhance water use efficiency of plants. However, the underlying CO_2 sensing mechanisms remain unknown.

Research has suggested that bicarbonate (HCO₃⁻) may directly up-regulate SLAC1 anion-channels, which is required for stomatal closing. However, whether this HCO₃⁻ regulation is relevant remained unknown. We computationally predicted candidate bicarbonate-binding sites in SLAC1 through molecular dynamics simulations. Gas exchange and patch-clamp experiments with complemented *slac1* mutant plants expressing SLAC1 proteins mutated at a critical site for HCO₃⁻ regulation suggest that SLAC1 can function as a direct "secondary" bicarbonate/CO₂ sensor. An additional primary CO₂ sensor is needed for protein kinase activation.

 $[CO_2]$ elevation and the plant hormone abscisic acid (ABA) trigger stomatal closure. However, it remains unclear whether $[CO_2]$ -triggered stomatal closure is mediated via activation of ABA signaling. Data using multiple approaches including newly designed real-time FRET protein kinase-nanosensors and ABA-nanosensors provide evidence for a new model of how CO_2 signaling and ABA signaling merge in stomatal control.

Advances at dissecting CO₂-specific signaling in the grass species *Brachypodium distachyon* will be presented. A new critical component that functions in transmitting osmotic/drought stress and abscisic acid signal transduction will be presented, leading to a new model for early ABA signal transduction mechanisms that control stomatal movements.